翻訳と辞書
Words near each other
・ Conway Savage
・ Conway Scenic Railroad
・ Conway School District
・ Conway School District (Arkansas)
・ Conway School of Landscape Design
・ Conway Seashore Railroad
・ Conway Smith
・ Conway Sonne
・ Conway sphere
・ Conway Springs, Kansas
・ Conway Stewart
・ Conway Street
・ Conway Summit
・ Conway Tearle
・ Conway Township, Michigan
Conway triangle notation
・ Conway Twitty
・ Conway Twitty discography
・ Conway Whittle Sams
・ Conway Yard
・ Conway Zirkle
・ Conway's Bridge
・ Conway's Game of Life
・ Conway's law
・ Conway's LUX method for magic squares
・ Conway's Soldiers
・ Conway, Arkansas
・ Conway, Florida
・ Conway, Iowa
・ Conway, Kansas


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Conway triangle notation : ウィキペディア英語版
Conway triangle notation
In geometry, the Conway triangle notation, named after John Horton Conway, allows trigonometric functions of a triangle to be managed algebraically. Given a reference triangle whose sides are ''a'', ''b'' and ''c'' and whose corresponding internal angles are ''A'', ''B'', and ''C'' then the Conway triangle notation is simply represented as follows:
: S = bc \sin A = ac \sin B = ab \sin C \,
where ''S'' = 2 × area of reference triangle and

: S_\varphi = S \cot \varphi . \,
in particular
: S_A = S \cot A = bc \cos A= \frac \,
: S_B = S \cot B = ac \cos B= \frac \,
: S_C = S \cot C = ab \cos C= \frac \,
: S_\omega = S \cot \omega = \frac \,      where \omega \, is the Brocard angle.
: S_} = S \cot } = S \frac \,
: S_ = \frac \quad\quad S_} = S_\varphi + \sqrt \,    for values of   \varphi   where   0 < \varphi < \pi \,
: S_ = \frac \quad\quad S_ = \frac \,
Hence:
: \sin A = \frac = \frac = \frac \,
Some important identities:
: \sum_\text S_A = S_A+S_B+S_C = S_\omega \,
: S^2 = b^2c^2 - S_A^2 = a^2c^2 - S_B^2 = a^2b^2 - S_C^2 \,
: S_BS_C = S^2 - a^2S_A\quad\quad S_AS_C = S^2 - b^2S_B\quad\quad S_AS_B = S^2 - c^2S_C \,
: S_AS_BS_C = S^2(S_\omega-4R^2)\quad\quad S_\omega=s^2-r^2-4rR \,
where ''R'' is the circumradius and ''abc'' = 2''SR'' and where ''r'' is the incenter,   s= \frac \,    and   a+b+c = \frac \,
Some useful trigonometric conversions:
: \sin A \sin B \sin C = \frac \quad\quad \cos A \cos B \cos C = \frac
: \sum_\text \sin A = \frac = \frac \quad\quad \sum_\text \cos A = \frac \quad\quad \sum_\text \tan A = \frac =\tan A \tan B \tan C \,
Some useful formulas:
: \sum_\text a^2S_A = a^2S_A + b^2S_B + c^2 S_C = 2S^2 \quad\quad \sum_\text a^4 = 2(S_\omega^2-S^2) \,
: \sum_\text S_A^2 = S_\omega^2 - 2S^2 \quad\quad \sum_\text S_BS_C = S^2 \quad\quad \sum_\text b^2c^2 = S_\omega^2 + S^2 \,
Some examples using Conway triangle notation:
Let ''D'' be the distance between two points P and Q whose trilinear coordinates are ''p''''a'' : ''p''''b'' : ''p''''c'' and ''q''''a'' : ''q''''b'' : ''q''''c''. Let ''K''''p'' = ''ap''''a'' + ''bp''''b'' + ''cp''''c'' and let ''K''''q'' = ''aq''''a'' + ''bq''''b'' + ''cq''''c''. Then ''D'' is given by the formula:
: D^2= \sum_\text a^2S_A\left(\frac - \frac \right)^2 \,
Using this formula it is possible to determine OH, the distance between the circumcenter and the orthocenter as follows:
For the circumcenter ''p''''a'' = ''aS''''A'' and for the orthocenter ''q''''a'' = ''S''''B''''S''''C''/''a''
: K_p= \sum_\text a^2S_A = 2S^2 \quad\quad K_q= \sum_\text S_BS_C = S^2 \,
Hence:
:
\begin
D^2 & - \frac \right)^2 \\
& \sum_\text a^4S_A^3 - \frac \sum_\text a^2S_A + \frac \sum_\text S_BS_C \\
& \sum_\text a^2S_A^2(S^2-S_BS_C) - 2(S_\omega-4R^2) + (S_\omega-4R^2) \\
& \sum_\text a^2S_A^2 - \frac \sum_\text a^2S_A - (S_\omega-4R^2) \\
& \sum_\text a^2(b^2c^2-S^2) - \frac (S_\omega-4R^2) -(S_\omega-4R^2) \\
& - \frac \sum_\text a^2 - \frac (S_\omega-4R^2) \\
& S_\omega - \frac S_\omega + 6R^2 \\
& .
==References==

*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Conway triangle notation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.