翻訳と辞書 |
Conway triangle notation : ウィキペディア英語版 | Conway triangle notation In geometry, the Conway triangle notation, named after John Horton Conway, allows trigonometric functions of a triangle to be managed algebraically. Given a reference triangle whose sides are ''a'', ''b'' and ''c'' and whose corresponding internal angles are ''A'', ''B'', and ''C'' then the Conway triangle notation is simply represented as follows: : where ''S'' = 2 × area of reference triangle and : in particular : : : : where is the Brocard angle. : : for values of where : Hence: : Some important identities: : : : : where ''R'' is the circumradius and ''abc'' = 2''SR'' and where ''r'' is the incenter, and Some useful trigonometric conversions: : : Some useful formulas: : : Some examples using Conway triangle notation: Let ''D'' be the distance between two points P and Q whose trilinear coordinates are ''p''''a'' : ''p''''b'' : ''p''''c'' and ''q''''a'' : ''q''''b'' : ''q''''c''. Let ''K''''p'' = ''ap''''a'' + ''bp''''b'' + ''cp''''c'' and let ''K''''q'' = ''aq''''a'' + ''bq''''b'' + ''cq''''c''. Then ''D'' is given by the formula: : Using this formula it is possible to determine OH, the distance between the circumcenter and the orthocenter as follows: For the circumcenter ''p''''a'' = ''aS''''A'' and for the orthocenter ''q''''a'' = ''S''''B''''S''''C''/''a'' : Hence: : ==References==
*
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Conway triangle notation」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|